| Overview | Package | Class | Tree | Index | Help | |||
| PREV CLASS | NEXT CLASS | FRAMES | NO FRAMES | ||
| SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||
java.lang.Object | +--Jama.EigenvalueDecomposition
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond().
| Constructor Summary | |
| EigenvalueDecomposition(Matrix Arg)
Check for symmetry, then construct the eigenvalue decomposition |
|
| Method Summary | |
| Matrix | getD()
Return the block diagonal eigenvalue matrix |
| double[] | getImagEigenvalues()
Return the imaginary parts of the eigenvalues |
| double[] | getRealEigenvalues()
Return the real parts of the eigenvalues |
| Matrix | getV()
Return the eigenvector matrix |
| Methods inherited from class java.lang.Object | |
| clone, equals, finalize, getClass, hashCode, notifyAll, notify, toString, wait, wait, wait | |
| Constructor Detail |
public EigenvalueDecomposition(Matrix Arg)
A
- Square matrix| Method Detail |
public Matrix getV()
public double[] getRealEigenvalues()
public double[] getImagEigenvalues()
public Matrix getD()
| Overview | Package | Class | Tree | Index | Help | |||
| PREV CLASS | NEXT CLASS | FRAMES | NO FRAMES | ||
| SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||